WIMA MKP-Y2

Funkentstörkondensatoren der Klasse Y2 aus metallisiertem Polypropylen (PP) in den Rastermaßen 10 mm bis 37,5 mm. Kapazitätswerte von 1000 pF bis 1,0 µF. Nennspannung 300 V~.

Spezielle Eigenschaften

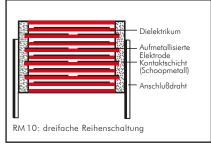
- Sicheres Regenerierverhalten
- Hoher Entstörungsgrad durch dämpfungsarmen Aufbau mit niedrigem ESR
- AEC-Q200 qualifiziert AEC-Q200
- Konform RoHS 2015/863/EU

Anwendungsgebiete

Klasse Y2 Funkentstörapplikationen zur Einhaltung der EMV-Bestimmungen

- Netzparallelkondensatorzwischen Phase oder Nullleiter und berührbarem, schutzgeerdetem Gehäuse
- Überbrückung der Basisisolierung oderzusätzlichen Isolierung, Impulsspitzenspannung ≤ 5 kV

Aufbau


Dielektrikum:

Polypropylen (PP) Folie

Beläge:

Aufmetallisiert

Innerer Aufbau:

Umhüllung:

Lösungsmittelresistentes, flammhemmendes Kunststoffgehäuse mit Epoxidharzverguss, UL 94 V–0

Anschlüsse:

Verzinnter Draht.

Kennzeichnung:

Farbe: Rot. Aufdruck: Schwarz.

Elektrische Daten

Kapazitätsspektrum:

1000 pF bis 1,0 μF

Nennspannung: 300 $V \sim$

Dauergleichspannung* (typisch):

≤ 1000 V

Kapazitätstoleranzen:

 $\pm 20\%, \ \pm 10\%, \ \pm 5\%$

Betriebstemperaturbereich:

-55° C bis +105° C

Klimaprüfklasse: 55/105/56 nach IEC Kategorie der passiven Entflammbarkeit: B für Kondensatoren mit V > 1750 mm³ C für Kondensatoren mit V ≤ 1750 mm³

Verlustfaktoren bei + 20° C: tan δ

Isolationswerte bei $+20^{\circ}$ C: $C \le 0.33~\mu\text{F}$: $\ge 1.5 \cdot 10^4~\text{M}\Omega$ C $> 0.33~\mu\text{F}$: $\ge 5000~\text{s}$ (M $\Omega \cdot \mu\text{F}$) Meßspannung: 100 V/1 min. **Prüfungen:** Nach IEC 60384-14

Impulsbelastung:

100 <u>V/µ</u>s bei einem Spannungshub

mit $\sqrt{2}$ · 300 V~ = 425 V nach IEC 60384-14

Prüfspannung: 2700 V-, 2s.

Zuverlässiakeit:

Betriebszeit > 300 000 h

Ausfallrate < 2 fit (0,5 · U_N und 40° C)

	Gemessen bei	C ≤ 0,1 µF	0,1 μF < C ≤ 1,0 μF
Ì	1 kHz	≤ 18 · 10-4	≤ 20 · 10-4
	10 kHz 100 kHz	≤ 20 · 10 ⁻⁴ ≤100 · 10 ⁻⁴	≤ 60 · 10 ⁻⁴ -

Prüfzeichen:

Land	Prüfstelle	Norm	Prüfzeichen	Ausweis-Nr.
Deutschland	VDE	IEC 60384-14/4	10	40008997
USA/Kanada	UL	UL 60384-14 CAN/CSA-E60384-14	SU us	E 134915

Mechanische Prüfungen

Zugtest Anschlußdrähte:

10 N in Drahtrichtung nach IEC 60068-2-21

Schwingen:

6 h bei 10...2000 Hz und 0,75 mm Auslenkung bzw. 10 g nach IEC 60068-2-6

Unterdruck:

1kPa = 10 mbar nach IEC 60068-2-13 **Stoßtest:**

4000 Stöße mit 390 m/s^2 nach IEC 60068-2-29

* Bei einem Betrieb approbierter Entstörkondensatoren an einer Gleichspannung oberhalb der angegebenen Nennwechselspannung wird der Gültigkeitsbereich der zugrunde liegenden Zertifizierungen überschritten (IEC 60384-14).

Desweiteren reduziert sich die zulässige Flankensteilheit du/dt ($F_{max.}$) bei einer Gleichspannungsbelastung U- größer einem Wert entsprechend $\sqrt{2}\cdot U_N\sim$ nach

 $F_{max.} = F_N \cdot \sqrt{2} \cdot U_N \sim /U_{-}$

Verpackung

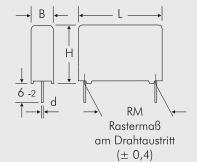
Gegurtet lieferbar.

Detaillierte Gurtungsangaben und Maßzeichnungen am Ende des Hauptkataloges.

Weitere Angaben siehe Technische Information.

WIMA MKP-Y2

Fortsetzung


Wertespektrum

			300 V~	_*	
Kapazität	В	Н	L	RM**	Bestellnummer
1000 pF	4	9,5	13	10	MKY22W11003D00
1200 "	4	9,5	13	10	MKY22W11203D00
1500 "	4	9,5	13	10	MKY22W11503D00
1800 "	4	9,5	13	10	MKY22W11803D00
2200 "	4	9,5	13	10	MKY22W12203D00
2700 "	4	9,5	13	10	MKY22W12703D00
3300 "	4	9,5	13	10	MKY22W13303D00
3900 "	4	9,5	13	10	MKY22W13903D00
4700 "	5	11	13	10	MKY22W14703F00
5600 "	5	11	13	10	MKY22W15603F00
6800 "	6	12,5	13	10	MKY22W16803H00
	5	11	18	15	MKY22W16804B00
8200 "	6	12,5	13	10	MKY22W18203H00
	5	11	18	15	MKY22W18204B00
0,01 μF	8	12	13	10	MKY22W21003I00
	5	11	18	15	MKY22W21004B00
0,012 "	5	11	18	15	MKY22W21204B00
0,015 "	5	11	18	15	MKY22W21504B00
0,018 "	5	11	18	15	MKY22W21804B00
0,022 "	6	12,5	18	15	MKY22W22204C00
0,027 "	6	12,5	18	15	MKY22W22704C00
0,033 "	8	15	18	15	MKY22W23304F00
0,039 "	8	15	18	15	MKY22W23904F00
0,047 "	8	15	18	15	MKY22W24704F00
0,056 "	8	15	18	15	MKY22W25604F00
0,068 "	9	16	18	15	MKY22W26804J00
	6	15	26,5	22,5	MKY22W26805B00
0,082 "	7	16,5	26,5	22,5	MKY22W28205D00

* f = 50/60 Hz

** RM = Rastermaß

Alle Maße in mm.

Bestellnummer-Ergänzung:

Toleranz: 20 % = M10 % = K

5 % = J

Verpackung: lose = S Drahtlänge: 6-2 = SD

Gurtungsangaben Seite 157

d = 0,8 Ø bei RM 15 - 22,5

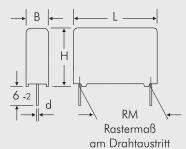
 $d = 0.6 \varnothing$ bei RM 10

Abweichungen und Konstruktionsänderungen vorbehalten.

Fortsetzung Seite 97

WIMA MKP-Y2

Fortsetzung

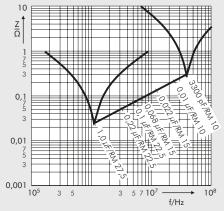

Wertespektrum

17			300 V~	_*	
Kapazität	В	Н	L	RM**	Bestellnummer
0,1 μF	7	16,5	26,5	22,5	MKY22W31005D00
0,12 "	8,5	18,5	26,5	22,5	MKY22W31205F00
0,15 "	8,5	18,5	26,5	22,5	MKY22W31505F00
	9	19	31,5	27,5	MKY22W31506A00
0,18 "	10,5	19	26,5	22,5	MKY22W31805G00
	9	19	31,5	27,5	MKY22W31806A00
0,22 "	11	21	26,5	22,5	MKY22W32205I00
	9	19	31,5	27,5	MKY22W32206A00
0,27 "	11	21	31,5	27,5	MKY22W32706B00
0.33 "	11	21	31,5	27,5	MKY22W33306B00
	13	24	41,5	37,5	MKY22W33307C00
0,39 "	13	24	31,5	27,5	MKY22W33906D00
	13	24	41,5	37,5	MKY22W33907C00
0,47 "	15	26	31,5	27,5	MKY22W34706F00
	13	24	41,5	37,5	MKY22W34707C00
0,56 "	15	26	31,5	27,5	MKY22W35606F00
	13	24	41,5	37,5	MKY22W35607C00
	15	26	41,5	37,5	MKY22W35607D00
0,68 "	17	29	31,5	27,5	MKY22W36806G00
	15	26	41,5	37,5	MKY22W36807D00
	17	29	41,5	37,5	MKY22W36807E00
0,82 "	17	34,5	31,5	27,5	MKY22W38206I00
	17	29	41,5	37,5	MKY22W38207E00
	19	32	41,5	37,5	MKY22W38207F00
1,0 µF	20	39,5	31,5	27,5	MKY22W41006J00
	17	29	41,5	37,5	MKY22W41007E00
	20	39,5	41,5	37,5	MKY22W41007G00

^{*} f = 50/60 Hz

** RM = Rastermaß

Alle Maße in mm.



 $d = 0.8 \varnothing \text{ bei RM} \le 27.5 \qquad (\pm 0.4)$

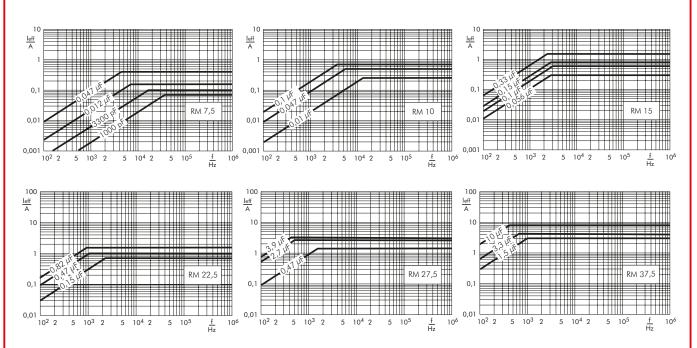
 $d = 1,0 \varnothing$ bei RM = 37,5

Toleranz: 20 % = M 10 % = K 5 % = J Verpackung: lose = S Drahtlänge: 6-2 = SD Gurtungsangaben Seite 157

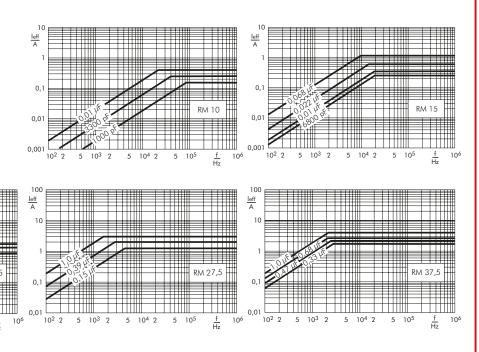
Bestellnummer-Ergänzung:

Scheinwiderstand in Abhängigkeit von der Frequenz (Richtwerte).

Abweichungen und Konstruktionsänderungen vorbehalten.


Stromkurven siehe Seite 94

WIMA MKP-X2


Fortsetzung

Zulässiger Wechselstrom in Abhängigkeit von der Frequenz bei 10° C Eigenerwärmung (Richtwerte).

WIMA MKP-Y2

Zulässiger Wechselstrom in Abhängigkeit von der Frequenz bei 10° C Eigenerwärmung (Richtwerte).

Technische Information und Wertespektrum siehe Seite 95

100 leff A

Verarbeitungs- und Applikations- —— empfehlungen für bedrahtete Bauteile

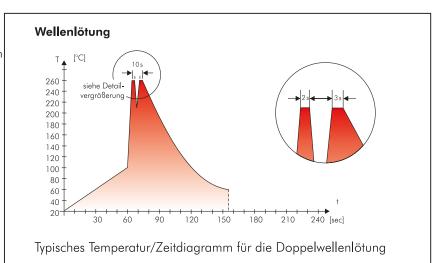
Lötprozess

Auf die Innentemperatur der Kondensatoren muss wie folgt geachtet werden:

Polyester: Vorheizphase: $T_{max.} \le 125^{\circ} \text{ C}$ Lötphase: $T_{max.} \le 135^{\circ} \text{ C}$

Polypropylen: Vorheizphase: T_{max.} ≤100° C Lötphase: T_{max.} ≤110° C

Wellenlöten


Lotbadtemperatur: $T < 260^{\circ}$ C Einwirkdauer: t < 5 s

Doppelwellenlöten

Lotbadtemperatur: $T < 260^{\circ}$ C Einwirkdauer: $\Sigma t < 5$ s

Aufgrund der vielfältigen Verfahren versteht sich das dargestellte Diagramm lediglich

als Empfehlung zur Ausarbeitung eines geeigneten praxisorientierten Lötprofils.

WIMA Qualitäts- und Umweltphilosophie

ISO 9001:2015 Anerkennung

ISO 9001:2015 ist eine internationale Grundnormzur Zertifizierung von Qualitätssicherungssystemenfüralle Industriebereiche. Allen WIMA-Fertigungsstätten wurde die Herstelleranerkennung gemäß ISO 9001:2015 erteilt. Damit wird bestätigt, dass Organisation, Einrichtungen und Qualitätssicherungsmaßnahmen international anerkannten Standards entsprechen.

WIMA WPCS

Das WIMA Process Control System (WPCS) ist ein von WIMA entwickeltes Qualitätsüberwachungs- und Qualitätssicherungssystem, das als Hauptbestandteil der qualitätsorientierten WIMA-Fertigung zu sehen ist. Die Einsatzstellen innerhalb des Fertigungsprozesses sind

- Wareneingangskontrolle
- Metallisierung
- Folienkontrolle
- Schoopen
- Ausheilen
- Kontaktieren
- Gießharzaufbereitung/Vergießen
- 100%ige Endkontrolle
- Kundenspezifische Prüfungen

WIMA Umweltpolitik

Alle WIMA Kondensatoren, bedrahtet wie SMD, werden aus umweltverträglichen Materialien gefertigt. Weder in der Fertigung, noch in den Produkten selbst werden toxische Stoffe verwendet, wie z. B.

- Blei PBB / PBDE
- PCB Arsen - FCKW - Cadmium - CKW - Quecksilber
- Chrom 6+ etc.

Bei der Verpackung unserer Bauteile werden ausschließlich sortenreine, recyclebare Materialien verwendet, wie z. B.

- Graukarton
- Wellpappe
- Papierklebeband
- Polystyrol

Zur Minimierung des Verpackungsauf wandes können Kunststoffteile zur Wiederverwertung zurückgenommen werden, z. B.

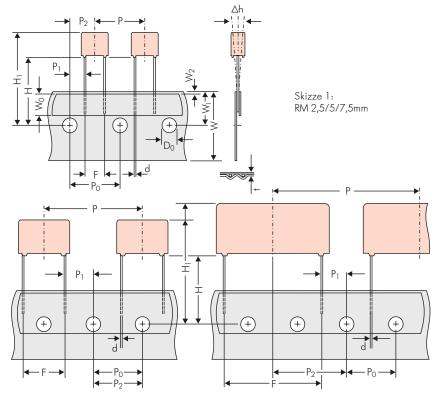
- WIMA EPS-Paletten
- WIMA Kunststoffhaspeln

Auf folgende Verpackungsmaterialien wird weitgehend verzichtet:

- Kunststoffklebebänder
- Metallklammern

RoHS Schadstoffverordnung

Gemäß der EU Schadstoffverordnung, die sich in der RoHS-Richtlinie (2015/863/EU in der jeweils gültigen Fassung) widerspiegelt, dürfen ab 01.07.2006 bestimmte Schadstoffe wie Blei, Cadmium, Quecksilber usw. nicht mehr in elektronischen Geräten verarbeitet werden. Der Umwelt zuliebe verzichtet WIMA bereits seit Jahrzehnten auf den Einsatz dieser Substanzen.


Kennzeichnungsband für bleifreie WIMA Kondensatoren.

DIN EN ISO 14001:2004

WIMA hat sein Umweltmanagementsystem gemäß den Richtlinien der DIN EN ISO 14001:2004 ausgelegt um Energie und Ressourcen im Produktionsprozess so umweltschonend wie möglich einzusetzen.

Typische Maßangaben für die Radial Gurtung

Skizze 2: RM 10/15 mm

Skizze 3: RM 22,5 und 27,5*mm
*RM 27,5-Gurtung auch mit 2 Führungsloch-Abständen

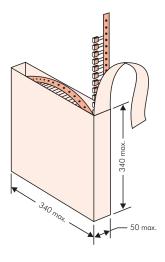
				Maßango	ıben zur Radia	l-Gurtung						
Bezeichnung	Symbol	RM 2,5-Gurtung	RM 5-Gurtung	RM 7,5-Gurtung	RM 10-Gurtung*	RM 15-Gurtung*	RM 22,5-Gurtung	RM 27,5-Gurtung				
Trägerbandbreite	W	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5				
Klebebandbreite	W ₀	6,0 für Heißsiegel- klebeband	6,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband				
Lage der Führungslöcher	W ₁	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5				
Lage Klebeband	W ₂	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,				
Führungsloch-Durchmesser	D ₀	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2				
Abstand der Bauelemente	Р	12,7 ±1,0	12,7 ±1,0	12,7 ±1,0	25,4 ±1,0	25,4 ±1,0	38,1 ±1,5	*38,1 ±1,5 bzw, 50,8 ±1,5				
Abstand der Führungslöcher	P ₀	12,7 ±0,3 20 Schritten 1,0 max,	kumulativ nach 12,7 ±0,3 20 Schritten 1,0 max,	12,7 ±0,3 20 Schritten 1,0 max,	12,7 ±0,3 20 Schritten 1,0 max,	12,7 ±0,3 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 20 Schritten 1,0 max,				
Abstand Führungsloch zu Drahtanschluß	P ₁	5,1 ±0,5	3,85 ±0,7	2,6 ±0,7	7,7 ±0,7	5,2 ±0,7	7,8 ±0,7	5,3 ±0,7				
Abstand Führungsloch zu Bauelementmitte	P ₂	6,35 ±1,3	6,35 ±1,3	6,35 ±1,3	12,7 ±1,3	12,7 ±1,3	19,05 ±1,3	19,05 ±1,3				
Abstand Führungsloch	Н▲	16,5 ±0,3	16,5 ±0,3	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5				
zur Bauelementunterkante	- '' -	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5				
Abstand Führungsloch zur Bauelementoberkante	H ₁	H+H _{Bauelement} < H ₁ 32,25 max,	H+H _{Bauelement} < H ₁ 32,25 max,	H+H _{Bauelement} < H ₁ 24,5 bis 31,5	H+H _{Bauelement} < H ₁ 25,0 bis 31,5	H+H _{Bauelement} < H ₁ 26,0 bis 37,0	H+H _{Bauelement} < H ₁ 30,0 bis 43,0	H+H _{Bauelement} < H ₁ 35,0 bis 45,0				
Rastermaß Oberkante Trägerband	F	2,5 ±0,5	5,0 +0,8 -0,2	7,5 ±0,8	10,0 ±0,8	15 ±0,8	22,5 ±0,8	27,5 ±0,8				
Draht-Durchmesser	d	0,4 ±0,05	0,5 ±0,05	*0,5 ±0,05 o, 0,6 +0.06 -0,05	*0,5 ±0,05 o, 0,6 +0,06 -0,05	0,8 +0,08 -0,05	0,8 +0,08 -0,05	0,8 +0.08 -0,05				
Parallelität	Δh	± 2,0 max,	± 2,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,				
Gesamtdicke des Bandes	t	0,6 ±0,2	0,6 ±0,2	0,6 ±0,2	0,6 ±0,2	0,6 ±0,2	0,6 ±0,2	0,6 ±0,2				
			ROLL/AMMO		AMMO							
Verpackung (siehe dazu auch Seite 158)	•	REEL Ø 360 max. Ø 30 ±1	EEL Ø 360 max. B 52 ±2 S8 ±2 S8 ±2 S9 von Boutorm Beutorm Beut									
Einheit		siehe Angaben auf Sei	ite 159.									

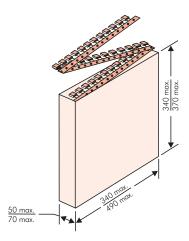
[▲] Bei Bestellung bitte Maß H und gewünschte Verpackungsart angeben.

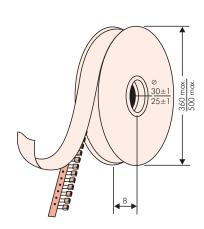
Alle Maße in mm. Anwenderspezifische Abweichungen sind mit dem Hersteller zu klären.

Draht-Durchmesser gem. Werteübersichten.

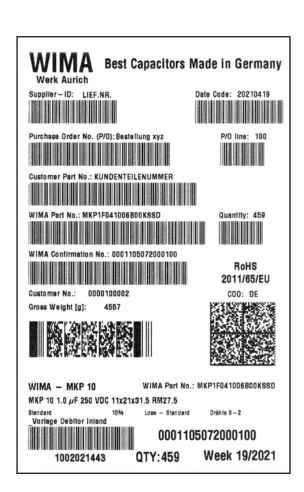
RM 10 und RM 15 kann auf RM 7,5 gekröpft werden. Es gelten die Gurtungsangaben der entsprechenden Rastermaße, Bauteilposition jedoch wie bei RM 7,5 (Skizze 1). $P_0=12,7$ oder 15,0 ist möglich.


Gurt-Verpackungsarten für Kondensatoren mit radialen Anschlüssen




■ Rollenverpackung ROLL

■ Trommelverpackung REEL


BAR CODE Kennzeichnung

Etikettierung der Verpackungseinheiten klartextlich und mit alphanumerischem Strichcode.

- WIMA-Liefernummer
- Datums-Code
- Kunden-Bestellnummer
- P/O Nummer des Kunden
- Kunden-Sachnummer
- WIMA-Bestellnummer
- Stückzahl
- WIMA Bestätigungsnummer
- Herkunftsland
- Kundennname
- Nummer der Liefercharge
- Lieferwoche.

Zusätzlich Artikelbeschreibung im Klartext

- Artikel
- Kapazitätswert
- Nennspannung
- Abmessungen
- Technischer Hinweis
- Kapazitätstoleranz
- Verpackung
- Anschlussart.

BARCODE PDF417 BARCODE 2D Datamatrix

-Verpackungseinheiten für Kondensatoren mit radialen Anschlüssen in den Rastermaßen 2,5 mm bis 27,5 mm

										kzahl					
D		Bau	form		loss	RO	LL	Ø3		EL Ø 5	500	340 ×		MO L 400 s	< 370
Rastermaß					lose	H16.5	H18.5					H16,5			
	В	Н	L	Codes	S	N	0	F	I	Н	J	Α	С	В	D
	2,5	7	4,6	OB	5000	22		25		-	-	28		-	-
2.5 mm	3	7,5	4,6	0C	5000	20		23		-	-	23		-	-
2,5 mm	3,8 4,6	8,5 9	4,6 4,6	OD OE	5000 5000	15		18 15			_	18 15			_
	5,5	10	4,6	0F	5000		00	12		_	_	1200		_	
	2,5	6,5	7,2	1A	5000	22	00	25		-	-	28		-	-
	3	7,5	7,2	1B	5000	20		23		-	-	23		-	-
	3,5	8,5	7,2	1C 1D	5000 6000	1600		20 15		-	-	20 15		-	-
	4,5 4,5	6 9,5	7,2 7,2	1E	4000	1300 1300		15		_	_	15			
	5	10	7,2	1F	3500	11		14		_	_	14		-	_
5 mm	5,5	7	7,2	1G	4000	10	00	12	00	-	-	12	00	-	-
3 111111	5,5	11,5	7,2	1H	2500	10		12		-	-	12		-	-
	6,5 7,2	8 8,5	7,2 7,2	11 1J	2500 2500		00 00	10 10		-	-	10		-	-
	7,2	13	7,2	1K	2000		00		50	_	_	10			_
	8,5	10	7,2	1L	2000		00		00	-	-		00	-	-
	8,5	14	7,2	1M	1500	600			00	-	-		00	-	-
	11	16	7,2	1N	1000		00		00	-		640		-	
	2,5 3	7 8,5	10 10	2A 2B	5000 5000	_		2500 2200		4400 4300		2500 2300			- 50
7,5 mm	4	9	10	2C	4000	_		1700		32		1700		4150 3000	
7,5 mm	4,5	9,5	10,3	2D	3500	_		1500		29	00	14	00		00
	5	10,5	10,3	2E	3000	-		13		25		13		-	-
	5,7 7.2	12,5	10,3	2F 2G	2000 1500	_		10	00 00	22 18		11		-	-
			13	3A	3000	_		11		22		-		1900	
	4	9	13	3C	3000	_		9	00	16	00	-			50
10	4	9,5	13	3D	3000	-			00	1600		-		1400	
10 mm	5 6	11 12	13 13	3F 3G	3000 2400	_		700 550		1300 1100		_		1100	
	6	12,5	13	3H	2400	-	_		550		1100		_		
	8	12	13	31	2000	-	- - -		00		00	-		1000 740	
	5	11	18	4B	2400	_	- -		00	12		-			50
	6	12,5	18	4C	2000	-	- - - -		00	10		-			00
15	7 8	14 15	18 18	4D 4F	1600 1200				50 00		00 00				50 40
15 mm	9	14	18	4H	1200	_			50		00	_			50
	9	16	18	4J	900	-		3:	50	7	00	-		6	50
	11	14	18	4M	1000	-		3	00		00	-			40
	5 6	14 15	26,5 26,5	5A 5B	1200 1000	-		-	-		00 00	-			70 40
	7	16,5	26,5	5D	760	_					00				50
22,5 mm	8,5	18,5	26,5	5F	500	-		-	-	4	80	-		4	50
,	10,5	19	26,5	5G	594*	-		-	-		00	-			60
	10,5 11	20,5 21	26,5 26,5	5H 5I	594* 561*	_	-		-	4	00 80	_			60 50
	9	19	31,5	6A	567*	_		_	-	460/		_		-	_
	11	21	31,5	6B	459*	-		-	-	380/	280*	-		-	-
27 5	13	24	31,5	6D	378*	-		-	-		00	-		-	-
27,5 mm	15 17	26 29	31,5 31,5	6F 6G	324* 198*	-		-	-	2	70	-		-	
	17	34,5	31,5	6I	198*	_									
	20	39,5	31,5	6J	162*	_		-	-	-	-	-		-	-

Änderungen vorbehalten.

 ^{*} bei 2-Zoll Transportschritt.
 * EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. Muster und Vorserienbedarf auf Anfrage.

Verpackungseinheiten für Kondensatoren mit radialen Anschlüssen in den Rastermaßen 37,5 mm bis 52,5 mm

									Stüc	 kzahl					
		D (r			RC	ROLL		RE	EL			AM	МО	
Rastermaß		Baut	orm		lose				Ø 360 Ø 500		340			× 370	
						H16,5	H18,5	H16,5	H18,5	H16,5	H18,5	H16,5	H18,5	H16,5	H18,5
27 5**	В	Н	L	Codes	S	N	0	F	- 1	Н	J	Α	С	В	D
	9	19	41,5	7A	441*	_		-	-	-	_	-	_	-	_
	11	22	41,5	7B	357*	_		-	-	-	-	-	_	-	_
	13	24	41,5	7C	294*	-		-	-	-	-	-	_	-	-
	15	26	41,5	7D	252*	-	-	-	-	-	-	-	-	-	-
	17	29 32	41,5	7E 7F	154* 140*	-		_		-	-	-	_	-	
37,5 mm**	19 20	39,5	41,5 41,5	7G	126*			_		_					
,	24	45,5	41,5	7H	112*			_		_		_		_	
	28	38	41,5	7L	84*		-	-	-		_		_		_
	31	46	41,5	71	84*	-		- -		_ _		_ _		-	
	35	50	41,5	7J	35*										_
	40	55	41,5	7K	28*	-	_		-			_		_	
	19	31	56	8D	120*	-	-	_		_		_		_	
40 F **	23	34	56	8E	80*	-	-	-	_		-		_		-
48,5 mm**	27	37,5	56	8H	84*	-	-	-		-	-	-	-	-	-
	33	48	56	8J	25*	-	-	-	-	-	-	-	-	-	-
	37	54	56	8L	25*	-		-		-		-		-	
	25	45	57	9D	70*	-	-	-	-	-	-		_	-	_
52 5 mm	30	45	57	9E	60*	-	-	-	-	-	-	-		-	
52,5 mm	35	50	57	9F	25*	-	-	-	-	-	-	-		-	
	45 45	55 65	57 57	9H 9J	20* 20*	-		-	-	-	-		_		-
	43	03	5/	ЭJ	20.										

Änderungen vorbehalten.

Aktualisierte Angaben auf www.wima.de

^{*} EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. **Für Snubber Kondensatoren in 2-Draht Ausführung ändert sich das Rastemaß in 38,5 bzw. 49,5 mm. Muster und Vorserienbedarf auf Anfrage.

- WIMA Bestellnummer-Systematik-

Eine WIMA Bestellnummer bestehend aus 18 Zeichen stellt sich wie folgt zusammen:

Feld 1 - 4: Typenbezeichnung Feld 5 - 6: Nennspannung

Feld 7 - 10: Kapazität

Feld 11 - 12: Bauform und Rastermaß

Feld 13 - 14: Versions-Code (z. B. Snubber Versionen)

Feld 15: Kapazitätstoleranz Feld 16: Verpackung

Feld 17 - 18: Drahtlänge (ungegurtet)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
M	К	S	2	С	0	2	1	0	0	1	Α	0	0	M	S	S	D
	MKS 2			63	V-		0,0	lμF		2,5×6	,5x7,2		-	20%	lose	6	-2

									<u>-</u>	
 Typenbezeich	ınung:	Nennspa	ınnung:	Kapazität:		Bauform:		Toleranz:		
SMD-PET	= SMDT	50 V-	= B0	22 pF = 0	0022	4,8x3,3x3 Size 1812	= KA	$\pm 20\% = 1$	Λ	
SMD-PEN	= SMDN	63 V-	= C0		0047	4,8x3,3x4 Size 1812	= KB	$\pm 10\% = K$		
SMD-PPS	= SMDI	100 V-	= D0	100 pF = 0	0100	5,7x5,1x3,5 Size 2220	= QA	$\pm 5\% = J$		
FKP 02	= FKPO	250 V-	= F0	150 pF = 0	0150	5,7x5,1x4,5 Size 2220	= QB	$\pm 2.5\% = +$	1	
MKS 02	= MKS0	400 V-	= G0	220 pF = 0	0220	7,2x6,1x3 Size 2824	= TA	$\pm 1\% = E$		
FKS 2	= FKS2	450 V-	= H0	330 pF = 0	0330	7,2x6,1x5 Size 2824	= TB	l		
FKP 2	= FKP2	520 V-	= H2	470 pF = 0	0470	10,2x7,6x5 Size 4030	= VA			
FKS 3	= FKS3	600 V-	= 10	680 pF = 0	0880	12,7x10,2x6 Size 5040	= XA			
FKP 3	= FKP 3	630 V-	= J0	1000 pF = 1	1100	15,3x13,7x7 Size 6054		Verpackung:		
MKS 2	= MKS2	700 V-	= K0	1500 pF = 1	1150	2,5x7x4,6 RM2,5	= OB	AMMO H16,5	5 340x340	= A
MKP 2	= MKP2	800 V-	= L0	2200 pF = 1	1220	3x7,5x4,6 RM2,5	= 0C	AMMO H16,5	5 490x370	= B
MKS 4	= MKS4	850 V-	= M0	3300 pF = 1	1330	2,5x6,5x7,2 RM5	= 1A	AMMO H18,5	5 340x340	= C
MKP 4	= MKP4	900 V-	= N0	4700 pF = 1		3x7,5x7,2 RM5	= 1B	AMMO H18,5	5 490x370	= D
MKP 10	= MKP1	1000 V-	= 01	6800 pF = 1	1680	2,5x7x10 RM7,5	= 2A	REEL H16,5 3	60	= F
FKP 4	= FKP4	1100 V-	= PO	$0.01 \mu F = 2$	2100	3x8,5x10 RM7,5	= 2B	REEL H16,5 5	00	= H
FKP 1	= FKP1	1200 V-	= Q0	$0.022 \mu F = 2$	2220	3x9x13 RM10	= 3A	REEL H18,5 3	60	=
MKP-X2	= MKX2	1250 V-	= RO	$0.047 \mu F = 2$		4x9x13 RM10	= 3C	REEL H18,5 5	00	= J
MKP-X1 R	= MKX1	1500 V-	= SO	$0.1 \mu F = 3$	3100	5x11x18 RM15	= 4B	ROLL H16,5		= N
MKP-Y2	= MKY2	1600 V-	= T0	$0.22 \mu F = 3$	3220	6x12,5x18 RM15	= 4C	ROLL H18,5		= 0
MKP 4F	= MKPF	1700 V-	= TA	$0.47 \mu F = 3$	3470	5x14x26,5 RM22,5	= 5A	BLISTER W12	180	= P
Snubber MKP	= SNMP	2000 V-	= U0	$1 \mu F = 4$	4100	6x15x26,5 RM22,5	= 5B	BLISTER W12	330	= Q
Snubber FKP	= SNFP	2500 V-	= V0	$2.2 \mu F = 4$	4220	9x19x31,5 RM27,5	= 6A	BLISTER W16	330	= R
GTO MKP	= GTOM	3000 V-	= W0	$4.7 \mu F = 4$	4470 	11x21x31,5 RM27,5	= 6B	BLISTER W24	330	= T
DC-LINK MKP 4	= DCP4	4000 V-	= X0	$10 \mu F = 5$	5100	9x19x41,5 RM37,5	= 7A	Schüttware/EP	S Standard	= S
DC-LINK MKP 6	= DCP6	6000 V-	= Y0	$22 \mu F = 5$	5220	11x22x41,5 RM37,5	= 7B			
DC-LINK HC	= DCHC	230 V~	= 3Y	$47 \mu F = 5$	5470	19x31x56 RM 48,5	= 8D			
		275 V~	= 1W	$100 \mu F = 6$	3100 	25x45x57 RM 52,5	= 9D			
		300 V~	= 2W	$220 \mu F = 6$	5220	·				
		305 V~	= AW	$1000 \mu F = 7$	7100					
		350 V~	= BW	$1500 \mu F = 7$	7150		<u>-</u>			
		440 V~	= 4W			Versions-Code:		Drahtlänge (et)
						Standard $= 00$		$3.5 \pm 0.5 = 0$	29	
						Version A1 $= 1A$		6 - 2 = S	D	
I		ı		i		1/		1 1 1 5		

Die Daten auf dieser Seite sind nicht vollständig und dienen lediglich der Systemerläuterung. Bestellnummer-Angaben befinden sich auf den Seiten der jeweiligen Reihen.

Version A1.1.1 = 1B

= 2A

Version A2

Drahtlänge (gegurtet)